Benha University
Faculty of Engineering-Shoubra Electrical Engineering Department $3^{\text {rd }}$ Year Computer Systems

Final Term Examination
Automatic Control (Code: ECE312c)
Date: 18 / 1 / 2016
Duration: 3 hours

- Answer all the following questions
- Illustrate your answers with sketches when necessary
- No. of questions : 5
- Total Mark: 80 Marks

Question (1) (20 Marks) (Achieved ILOs; a.1, a.2, b.2, b.3, b.4)
a) A controlled system described by the differential equation: $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=8 e^{2 t}$
i. Find the solution of that system if $y(t)$ and $x(t)$ are the output and input of the system respectively and the initial condition are: $y(0)=y^{\prime}(0)=3$.
ii. Find the final value of $y(t)$.
b) For the electrical circuit shown in Fig. (1):
i. Write the loop equations.
ii. Draw the block control diagram using these loop equations in (i).
iii. Find the transfer function $E_{o}(s) / E_{i}(s)$ as function of the electrical elements in the circuit.

Fig. (1)

Question (2) (20 Marks) (Achieved ILOs; a.1, a.2, b.2, b.4)

a) For the control system shown in Fig. (2); reduce that system to a single transfer function C / R.
b) For the signal flow graph shown in Fig. (3); find the transfer function $C(s) / R(s)$ using Mason's rule.

Fig. (2)
Fig. (3)

Question (3) (15 Marks) (Achieved ILOs; a.1, a.2, a4, b.5, b.16)

a) For the position-control system shown in Fig. (3), determine the following.

Fig. (3)
i. Find the position, velocity, and acceleration error constants.
ii. Find the steady-state error for a unit-step input, a unit-ramp input, and a unit-parabolic input.
b) Consider a second-order unity feedback system with $\zeta=0.6$ and $\omega_{\mathrm{n}}=5 \mathrm{rad} / \mathrm{sec}$.
i. Calculate the rise time, peak time, maximum overshoot, and settling time when a unit-step input is applied to the system.
ii. Draw the response curve and show the damping type of the system

Question (4) (15 Marks) (Achieved ILOs; a.1, a.2, a.4, b.3, b.11)

a) Check the stability of the closed-loop system shown in Fig.(4).

Fig.(4)
b) Consider the closed-loop system shown in Fig.(5). Determine the range of K for stability. Assume that $\mathrm{K}>0$.

Fig.(5)

Question (5) (10 Marks) (Achieved ILOs; a.1, a.2, b.2, b.16)

For the digital control system shown in Fig.(6), i) Find the discrete-time output $Y(z)$ of the closed-loop control system. ii) Obtain the continues-time output $\mathrm{Y}(\mathrm{s})$.

Fig.(6)

Model Answer

Question (1)

a) A controlled system described by the differential equation: $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=8 e^{2 t}$
i. Find the solution of that system if $y(t)$ and $x(t)$ are the output and input of the system respectively and the initial condition are: $y(0)=y^{\prime}(0)=3$.
ii. Find the final value of $y(t)$.

Answer

i. $\quad y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=8 e^{2 t}$

$$
\begin{aligned}
& {\left[S^{2} Y(\mathrm{~s})-S y(0)-y^{\prime}(0)\right]-3[S Y(\mathrm{~s})-y(0)]+2 Y(\mathrm{~s})=\frac{8}{S-2} \ldots \ldots \ldots . \text { if } y^{\prime}(0)=y(0)=3} \\
& {\left[S^{2} Y(\mathrm{~s})-3 S-3\right]-3[S Y(\mathrm{~s})-3]+2 Y(\mathrm{~s})=\frac{8}{S-2}} \\
& S^{2} Y(\mathrm{~s})-3 S-3-3 S Y(\mathrm{~s})+9+2 Y(\mathrm{~s})=\frac{8}{S-2} \\
& S^{2} Y(\mathrm{~s})-3 S Y(\mathrm{~s})+2 Y(\mathrm{~s})-3 S+6=\frac{8}{S-2} \\
& Y(\mathrm{~s})\left(S^{2}-3 S+2\right)=\frac{8}{S-2}+3 S-6 \\
& Y(\mathrm{~s})[(S-1)(\mathrm{S}-2)]=\frac{3(S-2)^{2}+8}{S-2}
\end{aligned}
$$

$$
Y(\mathrm{~s})=\frac{3(S-2)^{2}+8}{(S-1)(S-2)^{2}}=\frac{3(S-2)^{2}}{(S-1)(S-2)^{2}}+\frac{8}{(S-1)(S-2)^{2}}=\frac{3}{(S-1)}+\frac{8}{(S-1)(S-2)^{2}}
$$

$$
\therefore \frac{3(S-2)^{2}+8}{(S-1)(S-2)^{2}}=\frac{3+A}{(S-1)}+\frac{B}{(S-2)^{2}}+\frac{C}{(S-2)}
$$

First: :mutiply both sides by $(S-1)$ and lets S goto $+1 \quad \rightarrow \therefore A=8$
Second :mutiply both sides by $(S-2)^{2}$ and lets S go to $+2 \rightarrow \therefore B=8$
Third : Put $S=0 \& A=8 \& B=8 \quad \rightarrow \therefore C=-8$

$$
\begin{aligned}
\therefore & \frac{3(S-2)^{2}+8}{(S-1)(S-2)^{2}}=\frac{11}{(S-1)}+\frac{8}{(S-2)^{2}}+\frac{-8}{(S-2)} \\
& \therefore y(t)=11 e^{t}-8 e^{2 t}+8 t e^{2 t}
\end{aligned}
$$

ii. $\quad \lim _{t \rightarrow \infty} y(t)=\lim _{S \rightarrow 0} S Y(\mathrm{~s})=\lim _{S \rightarrow 0} S \frac{3(S-2)^{2}+8}{(S-1)(S-2)^{2}}=0$

Ans. (1/9)

Question (1)

b) For the electrical circuit shown in Fig. (a):
i. Write the loop equations.
ii. Draw the block control diagram using these loop equations in (i).
iii. Find the transfer function $E_{O}(s) / E_{i}(s)$ as function of the electrical elements in the circuit.

Fig. (a) t-domain circuit

Fig. (b) S-domain circuit
ii. The control diagram is shown in Fig. (c)

Fig. (c)
iii. From Fig. (b)

$$
\begin{align*}
& \frac{E_{o}(s)}{E_{x}(s)}=\frac{L S}{R_{2}+L S} \ldots \ldots \ldots \ldots \ldots \ldots . . . \text { then } \ldots \ldots E_{o}(s)=\frac{L S}{R_{2}+L S} E_{x}(s) \quad \ldots \ldots . . \text { (1) } \\
& Z=\frac{\left(\frac{1}{C S}\right)\left(R_{2}+L S\right)}{\left(R_{2}+L S\right)\left(\frac{1}{C S}\right)}=\frac{R_{2}+L S}{R_{2} C S+L C S^{2}+1} \\
& \frac{E_{x}(s)}{E_{i}(s)}=\frac{Z}{Z+R_{1}} \ldots \ldots . \text { then } \ldots \ldots E_{i}(s)=E_{x}(s) . \frac{R_{1}+R_{2}+L S+R_{1} L C S^{2}+R_{1} R_{2} C S}{R_{2}+L S} .
\end{align*}
$$

From Equations (1) \& (2) :

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{L S}{R_{1}+R_{2}+L S+R_{1} L C S^{2}+R_{1} R_{2} C S}
$$

Question (2)
a) For the control system shown in Fig. (2); reduce that system to a single transfer function C / R.

Question (2)
b) For the signal flow graph shown in Fig. (3); find the transfer function $C(s) / R(s)$ using Mason's rule.

Solution

We have three forward path

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} G_{5} \\
& P_{2}=G_{1} G_{6} G_{4} G_{5} \\
& P_{3}=G_{1} G_{2} G_{7}
\end{aligned}
$$

We have three loops

$$
\begin{aligned}
& \mathrm{L}_{1}=-\mathrm{G}_{4} \mathrm{H}_{1} \\
& \mathrm{~L}_{2}=-\mathrm{G}_{2} \mathrm{G}_{7} \mathrm{H}_{2} \\
& \mathrm{~L}_{3}=-\mathrm{G}_{6} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{2} \\
& \mathrm{~L}_{4}=-\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{2}
\end{aligned}
$$

$$
\Delta=1-\left(\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}\right)+\mathrm{L}_{1} \mathrm{~L}_{2}
$$

$$
\Delta=1+\mathrm{G}_{4} \mathrm{H}_{1}+\mathrm{G}_{2} G_{7} H_{2}+G_{6} G_{4} G_{5} H_{2}+\mathrm{G}_{2} G_{3} G_{4} G_{5} H_{2}+\mathrm{G}_{2} G_{4} G_{7} H_{1} H_{2}
$$

All loops touching the forward paths P_{1}
All loops touching the forward paths P_{2}

Only loop L_{1} non touching the forward path $\mathrm{P}_{3} \square \square \Delta_{3}=1+G_{4} H_{1}$

$$
G=\frac{1}{\Delta} \sum_{k=1}^{N} p_{k} \Delta_{k} \quad \square G=\frac{C(s)}{R(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+p_{3} \Delta_{3}}{\Delta}
$$

$$
\frac{C(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4} G_{5}+G_{1} G_{6} G_{4} G_{5}+G_{1} G_{2} G_{7}+G_{1} G_{2} G_{4} G_{7} H_{1}}{1+G_{4} H_{1}+G_{2} G_{7} H_{2}+G_{6} G_{4} G_{5} H_{2}+G_{2} G_{3} G_{4} G_{5} H_{2}+G_{2} G_{4} G_{7} H_{1} H_{2}}
$$

Ans. (4/9)

3)- a)

$$
G(s)=\frac{5(s+1)}{s(s+2)(s+3)}
$$

Position enror: $K_{p}=\lim _{\mathrm{s} \rightarrow 0} \mathrm{G}(\mathrm{s})=\lim _{\mathrm{s} \rightarrow 0} \frac{5(s+1)}{s(s+2)(s+3)}=\infty$
Velocity error: $K_{v}=\lim _{s \rightarrow 0} s G(s)=\lim _{s \rightarrow 0} \frac{5(s+1)}{(s+2)(s+3)}=\frac{5}{6}$
Acceleration error: $K_{a}=\lim _{s \rightarrow \infty} s^{2} G(s)=\lim _{s \rightarrow \infty} \frac{5 s(s+1)}{(s+2)(s+3)}=0$

Steady state error for unit step input:
$e_{s s}=\frac{1}{1+K_{p}}$
Referring to the result of problem 5-8, $K_{p}=\infty \rightarrow e_{s s}=0$
Steady state error for ramp input:
$e_{s s}=\frac{1}{K_{v}}$
Regarding the result of problem $5-8, K_{v}=\frac{5}{6} \rightarrow e(\infty)=\frac{6}{5}$
Steady state error for parabolic input:
$e_{s s}=\frac{1}{K_{a}}$
Regarding the result of problem 5-8, $K_{a}=0 \rightarrow e(\infty)=\infty$
3)- b)

Rise time: $\quad t_{r} \cong \frac{0.8+2.5 \xi}{\omega_{n}}=\frac{0.8+2.5 * 0.6}{5}=0.56 \mathrm{sec}$
Peak time: $\quad t_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}=\frac{3.14}{5 \sqrt{0.64}}=0.785 \mathrm{sec}$
Maximum overshoot: $M_{p}=e^{\frac{\pi \xi}{\sqrt{1-\xi^{2}}}}=e^{-\frac{0.6 \pi}{0.8}}=0.095$
Settling time: $t_{s} \cong \frac{3.2}{\xi \omega_{n}} \quad 0<\xi<0.69$

$$
\Rightarrow \quad t_{s} \cong \frac{3.2}{0.615} \cong 1.067 \mathrm{sec}
$$

4)- a)

The closed loop T.F. using Mason's rule is given by:

$$
\begin{aligned}
& \frac{C}{R}=\frac{\frac{10}{s(s+1)(s+5)}}{1-\left[-\frac{10}{s+5}-\frac{10}{(s+1)(s+5)}-\frac{10}{s(s+1)(s+5)}-\frac{1}{s(s+1)}\right]} \\
& \frac{C}{R}=\frac{10}{s^{3}+16 s^{2}+26 s+25}
\end{aligned}
$$

The characteristic equation is:
$S^{3}+16 S^{3}+26 S+25=0$
Using Routh criterion method:

$$
\begin{array}{lll}
\mathrm{S}^{3} & 1 & 26 \\
\mathrm{~S}^{2} & 16 & 25 \\
\mathrm{~S}^{1} & \frac{16 \times 26-1 \times 25}{16}=24.4 & 0 \\
\mathrm{~S}^{0} & \frac{24.4 \times 25-16 \times 0}{24.4}=26 & 0
\end{array}
$$

The sign in the first column is not changed. Then, the system is stable
4)- b)

The closed-100p transfer function $C(s) / R(s)$ is

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{K(s-2)}{(s+1)\left(s^{2}+6 s+25\right)+K(s-2)} \\
& =\frac{K(s-2)}{s^{3}+7 s^{2}+(31+K) s+2 s-2 K}
\end{aligned}
$$

For stability, the dencoinator of this last equation must be a stable polyncailal. For the characteristic equation

$$
s^{3}+7 s^{2}+(31+k) s+25-2 k=0
$$

the Routh array becones as foilows:

$$
\begin{array}{ccc}
s^{3} & 1 & 31+K \\
s^{2} & 7 & 25-2 K \\
s^{\prime} & \frac{192+9 K}{7} & 0 \\
s^{0} & 25-2 K &
\end{array}
$$

Since K is assumed to be positive, for stability, we requize-

$$
12.5>x>0
$$

5)

$$
\begin{aligned}
& E(s)=U(s)-Y_{1}=u(s)-H(s) Y^{*}(s) \\
& Y(s)=G(s) E^{*}(s)
\end{aligned}
$$

taking the Pulse transfice for the above aqua

$$
\begin{aligned}
E^{*}(s) & =u^{*}(s)-\left[H(s) Y^{*}(s)\right]^{*} \\
& =u^{*}(s)-H^{*}(s) Y^{*}(s) \\
Y^{*}(s) & =\left[G(s)\left[H^{*}(s)\right]^{*}=G^{*}(s) E^{*}(s)\right. \\
\therefore Y^{*}(s) & =G^{*}(s)\left[u^{*}(s)-H^{*}(s) Y^{*}(s)\right] \\
& =G^{*}(s)-u^{*}(s)-G^{*}(s) H^{*}(s) Y^{*}(s) \\
Y^{*}(s) & =\frac{G^{*}(s) u^{*}(s)}{1+G^{*}(s) H^{*}(s)} \text { 苼 }
\end{aligned}
$$

now we can deduci Z-transform notat the discrete time ole \because

$$
\begin{aligned}
& \text { the discrete time } \frac{G(z) u(z)}{1+\mathcal{S}^{\prime}(z) H(z)} \quad \text { \# }(i) \\
& Y(Z)=\frac{G(z) U(z)}{1+G(z) H(z)}
\end{aligned}
$$

ii) Continous-Time output i-

$$
\begin{aligned}
Y(s) & =G(s) E^{*}(s) \\
& =G(s)\left[u^{*}(s)-H^{*}(s) Y^{*}(s)\right] \\
& =G(s) u^{*}(s)-G(s) H^{*}(s) Y^{*}(s) \\
& =G(s) u^{*}(s)-G(s) H^{*}(s) \cdot \frac{G^{*}(s) u^{*}(s)}{1+G^{*}(s) H^{*}(s)} \\
Y(s) & =G(s) u^{*}(s)\left[1-\frac{G^{*}(s) H^{*}(s)}{1+G^{*}(s) H^{*}(s)}\right]
\end{aligned}
$$

\# (ii)

